
Electronics 4: The AVR Microcontroller

The AVR Microcontroller

Introduction

Digital electronic circuits, which process information represented as numbers rather than as voltages,

can be found not only in computers but also in just about every kind of electrical device. In many

cases, the digital circuits used are not custom-made for each application, but are general-purpose

computers that have been programmed to perform the desired function. The AVR microcontroller

used in this experiment is one such device. In this experiment you will program the AVR using the

C language, to make timed pulses, and control some displays. You should come to appreciate how a

microcontroller can be useful in experimental work (e.g. year 2 projects).

1 A quick description of the AVR1, 2

1.1 Overview

The ATMEGA32U2 is one of a broad family of similar chips made by Atmel corp. They can be

considered as “computers on a chip”, since they have memory, a central processor and input and

output devices. In this experiment, we are using a Minimus module, which holds the chip and provides

easy connections to it. Table 1 compares the Minimus with the lab PCs.

Parameter Lab PC Minimus units

Processor speed ∼ 109
∼ 106 instructions/sec

Permanent memory ∼ 1011(disk) ∼ 32×103 bytes

Working memory ∼ 109(RAM) ∼ 103 bytes

Interfaces Many Logic signals, USB

Cost 400 5 £

Weight 10 0.007 kg

Power consumption 200 10−6 to 1 watts

Table 1: Comparison of the AVR Minimus module with a PC

1.2 Programming

The AVR can be programmed in C. However, the programmer should bear in mind not only the small

memory of the chip, but also that its fundamental data type is the 8-bit byte (in C, a char), and that

using an int or a double (32 or 64 bit variables) is more expensive in both memory space and

speed, as is arithmetic other than integer addition and subtraction. With thoughtful programming,

these are not significant limitations for most applications in the lab. For extreme cases, one can get

much more capable chips (and much less capable ones, if manufacturing cost really matters).

1“Alf (Bogen) and Vegard (Wollan)’s Risc processor" http://youtu.be/HrydNwAxbcY
2The manufacturer’s data sheet runs to hundreds of pages, and one has to study the relevant part in order to use an

unfamilar facility http://www.atmel.com/devices/atmega32u2.aspx

Physics Year 2 laboratory 1

Electronics 4: The AVR Microcontroller

1.3 Peripherals

The AVR has several internal circuits for communications, timing, measurement, and so on. It can be

configured to connect the required ones to its limited number of external pins. Here are the peripherals

that we will use in this experiment.

1.3.1 Input/Output (I/O) ports

The number stored in some predefined char variables: PORTB, PORTC, and PORTD can be repro-

duced in binary as logic level signals on the pins (an output port). A logic 1 is nominally +5 volts; 0 is

nominally zero volts. Alternatively, the logic levels applied to the pins can be read as the value of the

variable (an input port). Rapid manipulation of these variables (“bit banging”) is a useful technique

for making signals.

1.3.2 Analogue comparator

Some of the pins can be used to monitor analogue voltages anywhere in the 0 to 5V range. The

comparator will give a digital 1 or 0 output depending on whether one applied voltage is less than

or greater than a second one (or a fixed reference voltage of 1.1 V). We will use this to measure an

analogue signal.

2 The count-forever program

2.1 forever.c

This program (forever.c in the AVRcode folder on the lab PCs, reproduced overleaf) makes use

of an output port, PORTD, to drive some LEDs. The value saved in the PORTD variable is increased

by 1 again and again. Most of the code is common setup which you need not understand in detail,

but you should look at the part involving PORTD and try to predict what the individual bits of this

variable will be doing. A declaration similar to char PORTD; is hidden inside the header file.

2.2 Programming the chip......

Load the program into the Geany editor. Compile it using the Build button (there should be no errors).

Connect the programmer module to the PC using the USB cable. Put the chip into programming mode

as follows: first press and hold its RESET button, then press the HWB button, release the RESET

button, the and finally release the HWB button (see Figure 1). This is easy to do by rolling a finger

across the two buttons. You have to do it every time you want to reprogram the chip. Use Geany’s

Execute button to transfer the program to the chip; again there should be no errors. The program

should start running on the chip immediately. It takes power from the USB socket; but all the code

runs in the AVR chip.

Geany: Build: Execute (program):

Physics Year 2 laboratory 2

Electronics 4: The AVR Microcontroller

// Yr 2 forever counter for Minimus (AVR ATMEGA32U2)

// forever.c

#include <avr/io.h> // device-specific I/O

#include <avr/wdt.h> // watchdog timer

#include <avr/power.h> // system clock

int main(void) {

// Initialise system clock, disable watchdog timer

clock_prescale_set(clock_div_1); // full crystal speed (16 MHz)

MCUSR &= ~(1 << WDRF);

wdt_disable();

// Set the data direction registers

DDRD = 0xFF; // all 8 bits of port D as outputs

PORTD = 0;

while (1) { // Loop forever (because 1 is always true)

PORTD++;

}

}

2.3 Measure the outputs

Connect the zero volts ground reference pin(GND) of the module to a rail of the breadboard, and

use the oscilloscope to look at the signals on each of the pins of PORTD: PD0 to PD7 (Figure 1).

Sketch some of the waveforms. How does the timing of each signal relate to its neighbour?

Figure 1: Pinout of the Minimus board. Connections used in this experiment are highlighted.

Physics Year 2 laboratory 3

Electronics 4: The AVR Microcontroller

Write the numbers 0 to 7 in binary in a column:

000 (zero)

001 (one)

010 (two)

etc...

and see if you can find the same pattern. How fast is the fastest signal? What does this tell you aboutQ
the speed of the program?

Reprogram the chip with forever_slow.c. This is the almost same program, but every time

around the while(1) loop, a library function _delay_us is called to waste 10 microseconds.

Predict how fast PD0 should be changing, then check with the oscilloscope.

Which of the outputs do you expect to be producing an audible frequency? Check your prediction

by connecting a loudspeaker in series with a 47 Ω resistor between GND and each of PD0 to PD7 in

turn.

3 Driving LEDs

Connect the package containing light-emitting diodes (LEDs) to the PD0 to PD7 outputs of the mod-

ule, making sure there is a 330Ω resistor in series with each LED, as shown in figures 2 and 3. The

resistors limit the current in the LEDs to a safe value. For reasons that will become apparent later,

place the LEDs mid-way along the breadboard.

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PD7

AVR

330 Ω

GND

LEDs

Figure 2: Connection of LEDs

Still using the forever_slow.c program from section 2.3, observe the LEDs. Why are the

eight connected LEDs all the same brightness, even though the signals applied to them differ?Q
In order to see the LEDs flash, the program has to be slowed down some more. Estimate how fast

a flashing you will be able to see, then adjust the argument to the _delay_us() function (a constant

number of microsconds) to get the LEDs to flash in that range. (Hint: old TVs update the screen at

50 Hz). Program the chip and see how close you were. You must save “Save As” your modifications

with a different name (still ending in .c) before building, because the original file is write-protected.

Roughly how slowly does an LED have to flash before you can actually see it flash? Use the

scope to find out.

Physics Year 2 laboratory 4

Electronics 4: The AVR Microcontroller

Figure 3: Layout of LED circuit

4 Your name in lights

4.1 Writing letters

By changing the program, the LED circuit can be made to light the LEDs in any sequence you choose.

The program message.c lights the LEDs in a sequence that can appear to write messages in mid-air,

exploiting persistence of vision.

Examine message.c and try to explain how the for loops in in main build up a sequence of

letters. Program the AVR and swing the breadboard rapidly from side to side, and you should see the

letter A written in the air (hold the board firmly at the AVR end, and shake it in the shadow under the

bench for the best chance).

How does the sequence of numbers representing ’A’ in the letters array form the visual im-

pression of the character? You will need to convert the hexadecimal numbers (like 0x1F) to binary. Q
The table below should help. A pair of hex digits can be read as eight binary digits (0x1F = 0001,1111

binary). The initial 0x just means “this is an ’exadecimal number”.

Hexadecimal Binary Decimal

0x0 0000 0

0x1 0001 1

0x2 0010 2

0x3 0011 3

0x4 0100 4

0x5 0101 5

0x6 0110 6

0x7 0111 7

Hexadecimal Binary Decimal

0x8 1000 8

0x9 1001 9

0xA 1010 10

0xB 1011 11

0xC 1100 12

0xD 1101 13

0xE 1110 14

0xF 1111 15

Physics Year 2 laboratory 5

Electronics 4: The AVR Microcontroller

4.2 The synchronisation problem

Change the message and the corresponding length count in the program to correspond to your name,

and try again (remember you have to “Save As”). Short names work best. Unless your name is very

symmetric, you will find it harder to read.

The program does not synchronize the LED sequence with the swinging of the breadboard. Con-

sequently, your name gets written both backwards and forwards. Connect an acceleration-sensitive

switch to port PC7, as shown in Figure 4, to help prevent this. The switch should be oriented along

the arc of the swing. The rest of the circuit remains the same. Notice that the +5V supply is already

connected to the breadboard via a thermal fuse (top left of figure 3). When the switch opens, the bit

Vcc (+5V)

PC7
Vibration switch

GND

4.7 kΩ

Figure 4: Adding a vibration switch

read from PC7 will change from 0 to 1 (why?). A function to detect this, called switchsync, isQ
included in the program, but you must modify the program to call it, immediately after PORTD =

0 at the top of the main while loop. Reprogram the chip and try it out. If the message is back-

wards, reinsert the switch, pointing the other way. You might have to adjust some of the delay times,

depending on your name and the style of swing.

The switchsync function has more stages than you might expect. Try to explain why they are

necessary.Q

Figure 5: Persistence of vision display

Physics Year 2 laboratory 6

Electronics 4: The AVR Microcontroller

5 Measuring analogue quantities: light meter

5.1 Timing the charging of a capacitor

In this circuit, a light-dependent resistor (LDR) is used to charge a capacitor, see Figure 6. As the

light gets brighter, the resistance of the LDR decreases, so the capacitor charges faster. Inside the

AVR, we use a comparator to determine when the capacitor has charged to a fixed reference voltage.

We also use a digital output from the AVR (on the same pin) to discharge the capacitor, so the process

can be repeated.

+

PC2

digital
out (=0)output

enable

ACO

comparator

AVR

Vcc (+5V)

LDR

47 nF

1.1
V

Figure 6: Capacitor charging and discharging circuit

Leaving the wiring for the LED bar in place, add the LDR and capacitor as shown (you can remove

the acceleration switch). Program the AVR with lightmeter.c. Use the oscilloscope to watch

the voltage across the capacitor as the circuit operates. You should see a sawtooth waveform, which

varies as you shade the LDR. The contents of the LED bar should be a binary representation of the

light level. Record your observations and explanations, by referring to the program. The Appendix Q
may help you follow the code. Why is the sawtooth slightly nonlinear?

5.2 A proper display

A meter really needs a decimal display, not a binary one. Add the four-digit display, as shown in

Figure 7. Program the AVR with sevenseg.c and try out the lightmeter. Only the digits 0 to 4

C
lk

D
a
t
aVcc

GND

PB1PB0

Figure 7: Connection of seven-segment display

Physics Year 2 laboratory 7

Electronics 4: The AVR Microcontroller

will show up, as some work has been left for you to do in the bcdto7seg array.

sevenseg.c alters the numerical data twice: first from the single charge_time variable

to one variable for each of the decimal digits (units, tens, etc.), then each digit is looked up in the

bcdto7seg array to convert it into the arrangement of bits that lights the correct parts of the seven-

segment display, see figure 8. Finally, the bit patterns are bit-banged, one bit at a time, onto the single

data wire that goes to the display.

Work out the missing entries in the bcdto7seg conversion array, add them to the program and

see if your display works.Q

Bits: 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 1 = 0x5B=

0

5 1

6

24

3 7

Figure 8: Bit positions in seven-segment display

To show that you know what the different steps do, work out each step in the translation of the

binary value 00010101 to the data that goes to the display. How can all the necessary bits be sent

along two wires?Q

5.2.1 Enhancements

If things are going well, try altering the code. For example, you could modify charge_time just

before it is converted to BCD, so as to get a reading that increases with brightness. You could also

change the scale by changing either this, or changing the delay in the charging loop.

You can also try out the program lightmeter_usb.c, which sends its data to the PC via the

USB. Unfortunately, the code is too long to discuss in this experiment.

6 Checklist

Your lab book should contain:

• Diagrams of circuits you built.

• Programs (or parts of programs) that you wrote or understood, with comments showing how

they work — but you don’t have to include the full text of programs that are supplied to you.

• Observations and explanations as prompted by this manual.

Appendix

Some help to understand the microcontroller C code

There are quite a lot of comments in the code to explain what it is doing, so try to follow them first.

Two detailed features may be unfamiliar to you. First, the names of the registers that are associated

Physics Year 2 laboratory 8

Electronics 4: The AVR Microcontroller

with the hardware features of the AVR. These appear as variables with names like ACSR, DDRD, and

constants like ACBG. These are defined in the (300 page!) manual of the AVR chip, and are brought

into your code by means of the header file #include lines. We have already done the work of

finding out exactly which registers and bits to worry about, so you are not expected to. Here are some

relevant examples:

DDRD Data direction register for Port D. Every bit set to 1 in here makes the corresponding pin an

output (otherwise it is an input). Likewise DDRB and DDRC for ports B and C.

PORTD The lowest 8 bits of data saved here appear as logic voltages on the Port D pins, if the pins

are configured as outputs (using DDRD).

ACMUX Analogue comparator multiplexer. The number you store here will determine which input is

used as the ’-’ input of the comparator. 1 means Port C pin 2.

ACSR Analogue comparator status register. Each bit does something different to the comparator. For

example, setting bit 6 connects a 1.1 volt bandgap reference to its ’+’ input, see ACBG below.

ACBG Analogue comparator bandgap select. Not a register, just a constant value (6, as it happens).

Used to avoid having to remember that bit 6 controls the bandgap reference

ACO Analogue comparator output. This constant is the bit number of the output of the comparator,

to save having to remember that it is bit 5.

Bit manipulation in C, or what does FOO &=~(1<<BAR)mean

In hardware programming, you often need to alter or read just one bit of a variable (because it cor-

responds to a logic signal somewhere in the hardware). So for example, to make a number whose

binary representation has a single bit set in bit position 4, we use the C expression 1<<4. This takes

the value 1 (00000001 as a char in binary) and shifts it 4 places to the left, resulting in 00010000.

So the expression foo = 1<<4 puts this sequence of bits in the variable foo.

But we often want to set just bit 4 without zeroing all the others. This is done by the expression

foo |= 1<<4. This bitwise-or operator works because or-ing a value with 0 leaves it unchanged

but or-ing with 1 results in a 1.

Now suppose we want to clear (i.e. set to zero) just bit 4, leaving the others alone. We first want

a value with ones everywhere except at the location we want to clear. The bitwise invert operator, ~

does that: we first form ~(1<<4), which is 11101111. This we bitwise-and into the existing value:

foo &= ~(1<<4), which works because and-ing with 1 leaves bits unchanged.

Finally, we define a couple of C macros to make the bulk of our code clearer:

#define bit_set(r,b) r |= (1<<(b))

#define bit_clear(r,b) r &= ~(1<<(b))

so we can write bit_clear(PORTC, 2), which will be automatically expanded to the expression

that clears just bit 2 of the PORTC register. Similar macros let us write the boolean expression

bit_is_set(register, bitnumber)which will evaluate to true or false.

MSC 2013-10-03

Physics Year 2 laboratory 9

