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Electronics The Microbit Microcontroller

The Microbit Microcontroller

Aims of this experiment

• Explore the capabilities of a modern microcontroller and some peripheral devices.
• Understand how the signals at the various interfaces work with the software.
• Make a simple measuring instrument using a microcontroller.

The early parts of this experiment are fairly prescriptive, to get you started. The later parts provide scope
for you to devise your own microcontroller application. There is no need to do all the later parts in
equal detail, or slavishly follow the manual. Quality beats quantity. DEMO NOTES: Please note that
we would rather students showed their understanding in depth, rather than racing to superficially cover
every area.

Introduction

Microcontrollers are essentially single-chip computers. They are particularly useful for processing elec-
trical signals, with which they can connect quite simply. They can simplify electronic circuits in many
applications, because the hardware is fixed, and a new application requires only software changes.

A very small microcontroller, costing only pennies, might have the processing capacity to control a
complex multi-way light switch. Capabilities and prices range upwards by perhaps 100 fold; beyond that
lie smartphones and PCs. But the unique feature of microcontrollers is that they are intended for use in
embedded systems, in which they behave as a sophisticated electronic component, rather than providing
general-purpose computing.

The microcontroller in this experiment is a Nordic Semiconductor nRF51822 device, which is based
on the ubiquitous 32-bit ARM processor. It has 16 kilobytes (K) of working memory, 256 K of permanent
(flash) memory, and runs at 16 MHz. By microcontroller standards, these are mid-range numbers. The
advantage of this level of device is that it can run a specialised version of the high-level language Python
in real time. This is a great convenience for experimental development. 1

The exercises in the experiment introduce some of the ways the microcontroller interacts with other
electronics, and the kind of devices you can build by programming. This should be useful to you in
future experimental work (e.g. Year 2 projects, group studies...)

1 The development environment

The “Micro:bit” board was developed as an educational device. We use it here because it is the least
complicated hardware that supports Python, and we will assume you remember some Python program-
ming and electronics from Yr 1. In case you need more information about the board, its functions are
documented at
https://microbit-micropython.readthedocs.io/en/latest/microbit_micropython_api.html 2

1The USB interface is managed by a second ARM controller, illustrating the utility of small microcontrollers
2You will see a lot of schools-level material related to the Micro:bit on the web, but at a lower level than in this lab
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Plug the board into a USB socket on the PC, using a cable that supports data, not just power. Do not
access the board as a storage device, but instead use the Chrome web browser to access the Python editor
at https://python.microbit.org/v/2.0 The Connect button in the editor should allow you
to select and connect to the micro:bit.

If you have a new board, click the Flash button to write the example program to the board. This
will take a few seconds, and will set up the board for further use.

Use the Open Serial button to communicate with the Python command line on the board. You
may have to click the Send CTRL-C for REPL button (or even the CTRL-D and CTRL-C) to get
the Micropython prompt, >>>. 3 Note that these are buttons to click with your mouse on the browser
page, not keys on your keyboard. Test it by typing something like print(2*3). You could type a
whole program here, but it is more convenient to edit and save it using the editor.

Switch from the command line to the editor using the Close Serial button. Delete any existing
text and enter a simple Python program, for example

for i in range(10):
print(’{} * 5 = {}’.format(i, i*5))

Use the Flash button to transfer your program to the flash (permanent) memory on the board. The
program will immediately run on the microcontroller board, while the PC just serves as a communica-
tions terminal. Use Open Serial to take a look at its output. The program remains on the board (until
you re-flash it), so the CTRL-D reset option, which restarts Python on the board, will make it run again,
as will pressing the physical reset button on the board, close to the USB connector.

Try saving and loading your program on the PC. Chrome treats saving as downloading a file, so
Load/Save; Download Python Script; keep the file. You can give the download a sensible name using
the Script Name field in the editor. To restore a saved file, locate it on the PC and drag & drop it to
the Load panel.

2 Controlling an output

2.1 Flashing LED

As with any embedded project, the first thing to get working is turning on and off a light-emitting diode
(LED). Connect the LED/speaker circuit with crocodile clips to the GND and output 0 holes on the
board (black=GND). Run the program flash1.py on the board. The LED should flash with a 1 second
period.

flash1.py
import microbit as mb
from utime import sleep_ms

while True:
mb.pin0.write_digital(0)
sleep_ms(500)

3REPL = Read, evaluate, print loop. i.e. the software behind the command line
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mb.pin0.write_digital(1)
sleep_ms(500)

All our programs will import from the microbit module, because it gives access to the hard-
ware features of the board. mb.pin0 is the object that represents a physical connection point, and its
write_digital method sets the voltage appearing there: 0⇒ 0 V and 1⇒ 3.3 V. The sleep_ms
function introduces a delay specified in milliseconds

You should be able to work out how the code gives rise to the flashes of the LED. Check your
understanding by altering the delays. Why are two delays necessary? Document your findings. Q

2.2 Faster flashing

Increase the flashing rate by decreasing the delays. Eventually the LED will appear to be lit continuously.
Why is this? At what flashing frequency is the flashing no longer invisible? At this kind of frequency, Q
the clicks from the speaker will merge into an audible tone. You may want to use the CRTL-C button
in the command line interface to stop it. DEMO NOTES: Persistence of human vision. Individuals
vary. Everyone can see flashing at 10 Hz; probably nobody at 100 Hz. Think about TV screen refresh
rates. Note that the period is the sum of the delays (plus a little time for the other statements), and the
frequency is the inverse of that.

2.3 Fourier analysis

If you install an audio spectrum analysier on your phone or PC, you can use it to get an independent
measurement of the tone being produced by the speaker. This example uses FFTWave, but many are
available. Record the clearest analysis you can, see the screenshot in Fig. 1, and identify the main
frequency components.
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Figure 1: Fourier analysis of speaker signal. Sample rate = 11025 Hz, 1024 points, DC coupling, loga-
rithmic axes.

The tone produced by the little speaker is very distorted (the red time trace is nothing like a sine
or square wave), but this does not change the underlying frequency. The green trace is a Fourier series
analysis, in which each peak shows the amplitude of the component at the corresponding frequency. The
lowest peak, at about 85 Hz, is consistent with the timing of the Python code, and the many odd multiples
show that whatever the wave shape is, the positive and negative half-cycles are distorted in the same way.

2.4 Firmware tone generation

If you want good audible tones, then some better functions are built into the Micropython firmware. They
are not an essential part of this experiment, but you could use them in the later parts if necessary. e.g.

Playing with the music module on the command line
import music
music.pitch(440, 200) # Hz, ms
music.play(music.ENTERTAINER)
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3 Speed of Micropython statements

3.1 Fastest loop

To see the best speed of the flash1.py code, try removing the sleep_ms statements completely. Can you Q
estimate the time taken by a statement in this case? DEMO NOTES: about 4.4 kHz, 224 µs period hence
around 100 µs per statement.

The code in flash2 is faster, and that in flash3 faster still. Try these out, try to measure their speeds
as before. Can you see how time is saved?

flash2.py
import microbit as mb
wd = mb.pin0.write_digital
while True:

wd(0)
wd(1)

flash3.py
import microbit as mb
def fn():

wd = mb.pin0.write_digital
while True:

wd(0)
wd(1)

fn()

DEMO NOTES: A lot of Python’s time is spent looking things up in the available namespaces (i.e. dictio-
naries). flash2.py looks up mb.pin0.write_digital just once and is hence quicker: about 6.6 kHz, 150 µs
period. flash3.py ensures that inside the loop, the first dictionary searched (locals) contains the required
function: about 11.1 kHz, 90 µs period

4 Microbit hardware

4.1 Dice

The board has a built-in LED display and pushbuttons. mb.display.show() is a function that will
display digits, amongst other things, while mb.button_b.is_pressed() is a function that returns
True or False, depending on the state of the right-hand button. There is a similar function for button A,
on the left. The program die1.py works as a simple random number generator that displays an integer
between 1 and 6 after each press of button B.

die1.py
import microbit as mb

i = 0

while True:
i += 1
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if i > 6:
i = 1

if mb.button_b.is_pressed():
mb.display.show(i)

Try this program out and explain how it works. Why are the displayed digits unpredictable? DEMO

NOTES: i cycles throuigh the 1-to-6 loop many times during the time of a typical button press, so that it
is impossible to control which number gets left on the display when the press stops.

4.2 Encoding an image

mb.display.show() will also display user-defined images which are constructed from five rows of
five digits representing the brightness (0-9) of each LED, e.g.
mb.Image(’00000:00000:00900:00000:00000’) lights the centre LED, and
mb.Image(’90000:00000:00000:00000:00009’) lights two diagonal corners.

The program die2.py uses an array to translate the dice result into the canonical dice pattern. Only
the results 1 and 2 have been encoded, while the rest are displayed as question marks. Run this program
and complete it so that all the dice patterns are shown correctly. Verify it works, and explain how the
translation from integer to pattern is done.

die2.py
import microbit as mb

i = 0
images = [

’?’,
mb.Image(’00000:00000:00900:00000:00000’),
mb.Image(’90000:00000:00000:00000:00009’),
’?’,
’?’,
’?’,
’?’

]

while True:
i += 1
if i > 6:

i = 1
if mb.button_b.is_pressed():

mb.display.show(images[i])

5 Reaction timer

react1.py is a simple reaction timer that makes the user wait for a short random time while a diamond is
displayed, then it starts progressively lighting LEDs. The user has to stop the LEDs lighting as soon as
possible by pressing button B. The number of LEDs that get illuminated gives the user’s reaction time.
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react1.py
import microbit as mb
import utime
from random import randint

while True:
mb.display.show(mb.Image.TARGET)
delaytime = randint(1000, 6000)
utime.sleep_ms(delaytime) # Keep the user waiting...

mb.display.clear()
for i in range(25): # Start the clock...

mb.display.set_pixel(i%5, i//5, 9)
utime.sleep_ms(20)
if mb.button_b.is_pressed():

print(’reaction time = {} ms’.format(i*20))
break

utime.sleep_ms(3000)

Look at the code in react1.py and answer the following questions, in terms of the code used: Q

• How long is the diamond (the pre-defined TARGET image) displayed for?
• What does the break statement do here?
• What happens if the switch is never pressed?
• set_pixel(x,y,9) turns on the LED at location (x,y). What do the arguments (i%5, i//5) do?

DEMO NOTES: The diamond displays for a random time between 1000 and 6000 ms. break exits the for
i... counting loop as soon as the switch is pressed. The loop exits anyway at the end of the range of the
for loop. The modulus and integer divide operations calculate the row (group of 5) and column from the
1-dimensional counter i

Try measuring your reaction time. What is the resolution of the measurement (from the program)?

You might notice that you can cheat and get a reaction time of one LED. Improve the program so
that this is not possible, and explain how your fix works. DEMO NOTES: Holding down the switch
before the timing starts will make it stop on the first cycle. Reasonable fixes could for example ensure the
switch is not pressed before exiting the random delay (see react2.py) or detect an untrealistically small i
and display something else

6 Sensors

The board contains some simple sensors, accessed via the microbit module: temperature(), accelerome-
ter.xxx, display.read_light_level() and compass.xxx (magnetic field). In this part of the experiment, you
should develop your own device or instrument based on one of these. What follows are some suggestions.

Physics Year 2 Laboratory 7



Electronics The Microbit Microcontroller

6.1 Accelerometer

accel1.py sends the reading of one axis of the accelerometer over the serial connection. Run this
program and use the Open Serial editor button to see its output.

accel1.py
import microbit as mb
import utime

while True:
ax, ay, az = mb.accelerometer.get_values()
print(ax)
utime.sleep_ms(100)

The sensor units are 10−3 g [g is the acceleration due to gravity], so by rotating about the correct axis,
you should get readings varying roughly from +1000 to -1000.

Modify the code to make your own accelerometer instrument. One example would be an incli-
nometer, which measures the angle at which the device is held with respect to gravity. You will need to
experiment to find which directions on the board correspond to the x, y and z components of acceleration,
then pick two and use the Python arctangent function, math.atan2().

You could alternatively make a digital spirit level, in which the position of the illuminated LED
depends on the angle that the board is held at.

DEMO NOTES: There are many reasonable things that could be done here. Calibration is easy
because you can apply 1 g in any chosen direction by tilting the board. For the tilt meter the first thing
to do is empirically find out which of the x, y and z axes is which. Getting the angle from the arctan of a
ratio is a bit tricky because of the discontinuities in the function, and the possibility of dividing by zero,
so some conditional code might be needed. Also, it would be good to convert to degrees. see accel2.py
and accel3.py.

6.2 Magnetometer

You can make a magnetic object detector using the output of mb.compass.get_field_strength()
to control the display. Take care to not make short-circuits on the board with metal test objects. Fridge
magnets and scissors work well. DEMO NOTES: Again, many things would be reasonable, e.g.
field1.py

7 Checklist

Your lab book should contain:

• Diagrams of circuits you built
• Programs (or parts of programs) that you wrote or understood, with comments showing how they

work – but there is no need for the full text of programs that are supplied to you.
• Observations and explanations as prompted by this manual.
• Enough detail to enable someone to quickly pick up the thread of what you did and what you found

out.
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