
Please do not remove this manual from the lab. It is available via Canvas
DEMO NOTES: This manual contains demonstrator notes in blue italics

Electronics Servo control: Ball on beam

Servo control: Ball on beam

Aims of this experiment

• Implement a digital feedback system to balance a ball on a beam.
• Investigate the effect of PID parameters and filtering on the transient response of the system.

Balancing a ball at a chosen location on a tilting beam is a classic problem in feedback control,
because the system is inherently unstable (the ball runs away unless the beam is perfectly level). This
experiment uses a feedback loop programmed in Python on a microcontroller to stabilise the ball.

1 Position sensing

1.1 Linear potentiometer sensor

The position of the ball along the beam is sensed by a linear potentiometer, which you can think of as
a one-dimensional resistive touchscreen. A resistive track runs the length of the beam, and a potential
gradient is established along it. The weight of the ball pushes a flexible conductive layer into contact
with the track, so this second layer acquires the potential of the track at the location of the ball. The
circuit is shown in Figure 1.

From the figure, work out how the voltage measured at Y12 depends on the position of the ball,
including the possibility that the ball is not on the track. Hence explain the function of the resistors (the
2.2 kΩ is for protection and is not critical to the behaviour). Q

+3.3 V

0 V

2.7 kΩ

2.2 kΩ

100 kΩ

Y12 analogue
input

Ball

10 kΩ
Hotpot (Specta Symbol inc.)

1

2

3

Figure 1: Resistive position sensor

DEMO NOTES: If the ball is not present, Y12 = 0 V because the 100 kΩ to ground is its only connec-
tion; this is the purpose of the 100k. With the ball present, the voltage at Y12 ranges from 3.3 V at one
end of the track to 3.3 * 2.7k/(10k + 2.7k) ∼ 0.7 V. The 2.7k is to ensure that the ball-on voltage can never
fall to zero, so it can never be confused with the ball missing. The 2.2k is to prevent too much current
going through the track if it is wrongly connected. It also interacts with the 100k to slightly reduce the
other voltages discussed, but this doesn’t really matter.

Physics Year 2 Laboratory 1



Electronics Servo control: Ball on beam

1.2 Sensor readout

The circuit of Fig. 1 is built into the sensor cable, so it is only necessary to plug in the sensor so that
the red wire goes to +3.3 V and the brown to Y12 on the Pyboard microcontroller. Also connect a 7-
segment display, as in Fig. 2, and a 1 kΩ / 1 µF filter, as in Fig. 3, to enable an analogue output from the
microcontroller. The completed circuit is shown in Figure 4.

3V3 (+3.3 V)

GND (0 V) X10 (data)

X9 (clock)

Figure 2: Seven-segment display connections

X6 output 1 kΩ 1 µF
To scope

Figure 3: Output filter for the pulse-width modulated digital-to-analogue converter

Physics Year 2 Laboratory 2



Electronics Servo control: Ball on beam

Figure 4: Completed circuit

Connect the USB power to the microcontroller, and using the MuNu environment, run program
bb1.py on the microcontroller. This program reads the voltage from the sensor using an analogue-
to-digital converter (ADC), then copies the ADC reading to both the display and a digital-to-analogue
converter (DAC) that drives pin X6. Use one scope channel to monitor the Y12 input and the other the
X6 output, at the capacitor.

Manually raise and lower the beam to make the ball roll, and document the scope traces produced.
Take note of the approximate ADC readings for key positions of the ball (the ADC noise will make it
impossible to get exact values). You will probably see a good deal of noise in the trace, because the ball
does not stay in firm contact with the track while it rolls. The first requirement of a feedback loop is
a reliable sensor, so the first job is to write some code that recognises and ignores bad data. DEMO

NOTES: both traces should show a lot of glitches to zero volts, as the ball skips on and off the track.
There will be fewer glitches on the DAC output, because the microcontroller is sampling the sensor a lot
less frequently than the scope.

1.3 Sensor cleanup

Modify the loop in bb1.py so that if the ball loses contact with the beam, the position variable pos does
not get modified, but remembers its previous value, ignoring the bad data. Check if your code is effective
in removing the glitches in the sensor reading, as judged from the X6 output. DEMO NOTES: place the

Physics Year 2 Laboratory 3



Electronics Servo control: Ball on beam

pos = sensor inside an if sensor > 500 condition (or similar), which requires the ball to be
in contact. The DAC output should be a good deal cleaner (there can still be occasional glitches down
to levels other than zero). This is done in bb2.py, but not mentioned in the student manual

2 The control problem

2.1 Manual feedback

Using a mark roughly half-way along the beam, try to manually roll the ball to the location of the mark
by manipulating the angle of the beam. Then knock the ball away from its position and try to bring it
back. Make an oscilloscope recording of your attempt, using the X6 DAC output as in section 1.3. This
is the process that we want the microcontroller to accomplish. DEMO NOTES: Make sure students
are getting nice transient recordings, using a slow timebase (1 sec, roll, or similar) on the scope. When
under software control, they need to keep track of which parameters go with which recording.

2.2 PID control

The general technique is to continuously calculate the error between the actual and target position, and
then drive the system with negative feedback so as to reduce the size of the error (positive feedback
would increase the error). Mechanical systems using negative feedback are known as servomechanisms
(latin servus = slave). The difficulty lies in how to tailor the feedback to the dynamics of the system (for
example, to allow for the inertia of the ball). A flexible method is PID (proportional-integral-differential)
control. In PID control, in response to a time-varying error e(t), the output U that the controller feeds
back to the mechanical system is the linear combination

U(t) = Kpe(t)+KI

∫
e(t)dt +KD

d
dt

e(t) (1)

where KP, KI and KD are constants selected for a particular system. These are normally tuned by hand,
based on some physical intuition. This is what we will now do.

2.3 Scale and offset

In our system, the units of U and e in equation 1 are those of the sensor ADC, as noted in section 1.2,
whereas the units used by the cam motor are in the range -90 to +90. Moreover, a cam motor setting of
zero may not correspond to the beam being level.

Stop the program (ctrl-C), and try typing settings like servo1.angle(30) until you find the best
setting that makes the beam level (so the ball stays still), e.g. 25. Then calculate the scale factor that
takes us from the full sensor range to the full cam range, e.g. (90 - (-90)) / (3860 - 610) = 0.055. Use
these in the new program bb3.py to convert U to the required cam setting in the line
cam_angle = 25 - 0.055 * U, but using your own numbers.

Physics Year 2 Laboratory 4



Electronics Servo control: Ball on beam

2.4 Proportional control

Using bb3.py, which contains the beginings of PID control, set the target position to the middle of
the beam (e.g. (3860−610)/2 ≈ 2200), and set a reasonably large value such as 2 for the "proportional
gain" KP. Run the code, and see how it performs at bringing the ball to the target position. In particular,
give the ball a little displacement from the target position and record its subsequent movements using the
DAC output and the scope, as in section 2.1. The behaviour after a sudden upset is known as the transient
response, and it is a good way of characterising the system. It is probably not very good at the moment.

You should find that too large a KP makes the system overcorrect, causing increasingly large oscilla-
tions about the target position. Try to find a value for KP that makes the system converge on the target
position. There will still be oscillations, but of decreasing amplitude. Record your results for a range of
KP values. What is the drawback of small values?

DEMO NOTES: KP < 0.5 was stable in the case I tried. Bigger should give oscillations that get larger
on each cycle, until limited by the ball hitting the end of the track. A little smaller than this value (0.4),
and the oscillations slowly decay until the ball settles. But small KP makes the system response very
sluggish, and not very discriminating about where the ball settles (when KP = 0, it doesn’t care at all, of
course)

2.5 Proportional and differential control

You should be able to show that the position x of a ball rolling on a plane inclined at a small angle α in
gravitational field g is given by 1 Q

x(t) =
5
7

g
∫∫

α(t)dt dt (2)

DEMO NOTES: Force down the slope = mgsinα ≈ mgα . Effective inertial mass = m+ I/r2 where
I = 2

5 mr2 for a ball of radius r, (if you forget the rotation, then the 5
7 becomes 1). Then mgα = 7

5 m d2x
dx2 ,

and integrate twice for x. The integration amounts to a delay in the response, which gives rise to the
overshoot. Adding a differential term to the feedback provides some anticipation ("how fast is it going?")
that helps counteract this.

Program bb4.py adds a derivative term to the feedback. Explain how the Derror term is calcu-
lated as an approximation to de

dt . Starting with, e.g. KD = 0.02, investigate how an increasing differential
term improves the transient response (try 0.05, 0.1, 0.2 ...). The motor will jitter a lot more, because the
differential term is sensitive to noise (why?). We will improve this and re-optimise in section 3, so do not
spend too long on the remainder of this section. DEMO NOTES: If students get stuck here, playing with
loop constants, try to get them to leave the optimising until they have some filtering, in the next section.

With a non-zero KD term, you will be able to increase the KP term to increase the response speed
without paying the price of a massive overshoot. Explore optimising KD and KP for a fast transient
recovery with minimal overshoot. Keep note of the parameters you try, and make scope recordings of
some significant ones.

DEMO NOTES: olderror remembers the error from the previous pass through the loop, so Derror
= (error - olderror)/ dt is ∆e

∆t ≈
de
dt . Starting with KP = 0.3, KD = 0.05 already reduces the

overshoot, at the expense of some jitter, arising from noise. Increasing KD to 0.1, 0.2, 0.4 helps a bit

15/7 because the ball rotates as well as translates

Physics Year 2 Laboratory 5



Electronics Servo control: Ball on beam

more, but won’t reduce the settling time much, and makes the jitter worse. Noise from the ADC may
be quite small in magnitude, but jumps up and down rapidly, hence its differential is large. Or to look
at it another way, noise is broadband, and its higher frequency components get a large prefactor (the
frequency) when differentiated.

3 Filtering and optimisation

Noise in the position measurement causes the motor to jitter, which will cause wear. Increase the
pfilter coefficient in bb4.py to apply some filtering to the position measurement. Explain roughly
how the line
Fpos = pfilter * Fpos + (1 - pfilter) * pos makes Fpos a smoothed-out version
of pos. This should quieten the motor, but there is an inevitable trade-off between filtering and delay,
which affects the feedback, so try a few filtering levels. Adjust the PID parameters to compensate for
a little delay, and optimise the response, as suggested at the end of section 2.5. Document your best
transient response. Note that the meaning of "best" depends on the application: sometimes the fastest
approach to within (e.g.) ±5% of the final value is important; in other cases overshoot must never occur.
DEMO NOTES: By adding some of the previous values to the current value, Fpos forms a weighted
rolling average of pos values. Technically it’s a single-pole IIR filter, and is equivalent to the low-pass
filtering you’d get with a resistor and a capacitor. Too much averaging (pfilter too close to 1) adds too
much delay, spoiling the reaction time of the feedback loop.

4 Suggestions for further experiments

• A good way to show off the response of a system like this is to have it switch backwards and
forwards between two targets, so you can see the transient response on each move. If you connect a
switch between Y11 and ground, then in the main loop of bb4.py you can set the target depending
on whether the switch is pressed:
if switch.value() == 0: target = 1500; else ...

• What happens with positive feedback, i.e. if you reverse the sign of U?

• Would an integral term be of any help in this system?

• An improvement of your own.

DEMO NOTES: bb5.py is a finished program with the switch added. Positive feedback can diverge
to + or - infinity, in practice driving the ball to one or other limit. There is so much integration in the
system (Eq. 2) that a KI term is not critical, except for one thing: with zero error, a PI system has no
way of producing an output; yet the beam has to be kept level. We are doing this by the constant term
hardwired into cam_angle; if it is wrong, the ball will be kept slightly away from the target in order to
generate the necessary output. A small KI would reduce this long-term error to zero. A new variable is
needed in the loop, to keep track of the integrated (summed) error.

Physics Year 2 Laboratory 6



Electronics Servo control: Ball on beam

Checklist

Your lab book should contain:

• Diagrams of circuits you built and listings of code that you wrote.
• Waveforms, parameter values, observations and interpretations of your investigations, including

those prompted by this manual.
• Enough detail to enable someone to quickly pick up the thread of what you did and observed.

References

• http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/ Starting from
the naive approach to PID control used here, develops more professional control software.

MSC 2017-11-12

Physics Year 2 Laboratory 7


